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conventional particle simulation algorithms are not practi-
cal for such study, because of the disparate time scalesA hybrid MHD-gyrokinetic simulation model is presented which

is suitable for self-consistent study of the interaction of energetic involved. In particular, in a conventional particle code the
particles with low-frequency MHD waves. Fully electromagnetic time step is determined by the particle gyration, rather
gyrokinetic equations are used to describe the energetic particles, than by the mode frequency, and this can be a severe
while the cold background plasma is treated as a fluid, using nonlin-

restriction when the time scales of interest are orders ofear one-fluid MHD equations. Based on this model a hybrid MHD-
magnitude larger than the cyclotron period. In addition,gyrokinetic particle code has been developed. A df algorithm has

been implemented in the code for b p 1 electromagnetic perturba- excessive numerical noise due to the use of a limited num-
tions. The gyrokinetic description enables us to remove the restric- ber of particles in the simulation of a high beta plasma
tion on the particle time step dictated by the gyromotion, while the can also be a problem, especially if the physical instability
df algorithm strongly reduces the simulation numerical noise level.

of interest is a weak resonant type instability with a veryTherefore, considerably larger time steps and a smaller number of
low saturation amplitude.particles can be used in the simulations as compared to conven-

tional methods. The conservation properties of the model and cor- A number of hybrid MHD-gyrokinetic and MHD-drift
responding df scheme have been investigated. Representative kinetic models has been developed for analytical and nu-
two-dimensional simulations of the mirror instability and the tem- merical study of kinetic effects on MHD modes with appli-
perature gradient driven instability of the compressional mode were

cation to the space environment [3], as well as energeticperformed, and the simulation results are in very good agreement
particle effects on MHD stability in tokamaks [4–6]. Inwith linear theory. Q 1997 Academic Press

these models, energetic particles are treated as gyrokinetic
particles, while the cold background plasma is treated as

1. INTRODUCTION a fluid, using the magnetohydrodynamic description. The
gyrokinetic particles are coupled to the fluid equations

The interaction of low-frequency MHD waves with ener- through their pressure or current [4]. The hybrid approach
getic particles is of great interest for space and laboratory optimizes the efforts in simulating the two-component sys-
plasmas. It arises in any magnetized collisionless plasma tem by using the MHD description for the core plasma
system when the plasma can be considered to consist of and employing particle simulations for the energetic com-
two components: a low-temperature core plasma and a ponent only. The numerical model presented here is similar
hot plasma with low density. In particular, the resonant to the previous hybrid models; however, fully electromag-
interaction of magnetospheric hydromagnetic waves with netic phase-space preserving gyro-center equations [7, 8]
high energy protons is one of the leading candidates for are used for energetic particles (ions), the current coupling
explaining Pc 4-5 geomagnetic pulsations [1]; the toroidal scheme of Park et al. [4] is employed, and a low-noise df
Alfvén eigenmode (TAE) driven unstable through reso- method is implemented for electromagnetic perturbations
nant interaction with energetic ions may lead to large alpha in a high-beta (b p 1) plasma.
particle losses in tokamaks [2]. The gyrokinetic equations used in this work were derived

A self-consistent study of the interaction of energetic from systematic Hamiltonian theory [7, 9, 10] and satisfy
particles with low-frequency hydromagnetic waves in high- both phase volume and energy conservation. The deriva-
beta (the ratio of plasma to magnetic pressure) magnetized tion of the gyrokinetic equations is based on the gyrokinetic
plasma requires nonlinear kinetic calculations. However, ordering, which assumes, in particular, that the characteris-

tic frequency of the fluctuations is small compared to the
ion gyrofrequency (g ! gci) and that the average spatial1 E-mail: ebelova@pppl.gov. Present address: Princeton Plasma Physics
scale of the perturbation perpendicular to the backgroundLaboratory, Princeton University, P.O. Box 451, Princeton, New Jer-

sey 08543. magnetic field is comparable to the gyroradius (k'rh p 1).
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The reduced (gyrophase-averaged) system has one less dimensional simulations of magnetic Landau damping of
the compressional mode in a uniform, isotropic plasmadegree of freedom and describes the motion of the gyro-

center in the averaged fields. The elimination of the fast and simulations of the mirror instability with temperature
ratio T'/Ti 5 2.25 and bi 5 1 were performed. The driftparticle gyration from the equations of motion allows sig-

nificant increase of the simulation time step, while the instability of a compressional mode for b 5 0.5 was also
simulated. The simulation results are presented in Sectionfinite Larmor radius effects are retained and, thus, all the

relevant physics is kept. 7. A summary and conclusions are given in Section 8.
In order to achieve good total energy and particle num-

ber conservation in the hybrid MHD-gyrokinetic simula- 2. HYBRID MHD-GYROKINETIC
SIMULATION MODELtions, the condition Dt , Dxi/vthi has to be satisfied, where

vth is thermal velocity, Dx is grid spacing and subscript ‘‘i’’
We will consider low-frequency (compared to the iondenotes the direction parallel to the background magnetic

cyclotron frequency) perturbations in a plasma consistingfield. For typical parameters used in this paper, this condi-
of low temperature isotropic and hot anisotropic compo-tion represents an order of magnitude improvement in
nents with density nh ! nb and temperature Th @ Tb . Hereparticle time step as compared to a hybrid code with kinetic
subscript ‘‘h’’ denotes the hot ions and subscript ‘‘b’’ (bulk)ions, and the time step requirement has to be satisfied for
is used for the rest of the plasma (cold electrons and coldaccuracy rather than stability reasons. In the perpendicular
ions). In order to include perpendicular wavelengths withdirection a grid spacing Dx' , rh is needed in order to
k'rh p 1, the gyro-center equations of motion discussedresolve fluctuations with wavelength comparable to the
in Section 3 are used to advance energetic ions, while thegyroradius.
dynamics of the bulk plasma is described by nonlinear,Even though it was found that the use of gyrokinetic
compressional, one-fluid MHD equations.equations for hot particles (instead of following particle

Three-dimensional MHD-gyrokinetic simulations weretrajectories with the Lorentz force equation) greatly re-
first used by Park et al. [4] to study nonlinear energeticduces the simulation noise level, a very large number of
particle effects in tokamaks. Two sets of equations, theparticles is still necessary for 2D or 3D simulation of a
pressure coupling and the current coupling scheme, wereweak kinetic type instability. In order to reduce the numeri-
derived. In the pressure coupling scheme the off-diagonalcal noise associated with a finite number of simulation
elements of the hot ion pressure tensor are usually ne-particles, we have implemented a low-noise technique
glected, whereas the current coupling scheme avoids thiscalled the df method, in which the perturbation of the
assumption. In addition, the calculation of the first velocitydistribution function df, rather than the total distribution
moment has an advantage over the pressure moment calcu-function f 5 f0 1 df is evolved.
lation in terms of the numerical noise level. For theseIn the df algorithm the zero-order part of distribution
reasons the current coupling scheme is used in our model,function f0 is assumed to be known analytically, thus the
and the hot ions are coupled to the fluid equations throughintrinsic noise associated with representation of f0 by the
their current, which appears in the bulk plasma momentumlimited number of simulation particles is totally eliminated.
equation [4],The evolution of df is calculated along a set of charateristics

of the gyro-averaged Vlasov equation. The simulation par-
ticles in this case represent points (markers) in phase-space

rb
dvb

dt
5 2=pb 1 (j 2 jh) 3 B/c 2 enhE, (1)

at which the value of the distribution function is known,
rather than physical particles, and a time-varying weight
w p df/f is assigned to each marker particle. According to where rb , vb , and pb are the bulk plasma density, velocity,

and pressure; jh is the hot ion current density; j is totalthe estimates [11, 12] the noise intensity in the df simula-
tions scales as udf/f u2. Thus, the df algorithm gives a tremen- current density; B and E are magnetic and electric fields.

Note that the second term on the RHS of (1) is the amperedous noise reduction when low amplitude perturbations
are considered. force acting on the bulk component and the third term

represents the electric force acting on the excess electronsThe paper is organized as follows. The hybrid MHD-
gyrokinetic model is described in Section 2. In Section 3 in the bulk plasma (quasineutrality is assumed).

Other equations for the bulk plasma are the MHD equa-the gyro-center equations are presented. The df method
is considered in Section 4. The conservation properties tions
of the hybrid MHD-gyrokinetic df code are discussed in
Section 5. To verify the hybrid MHD-gyrokinetic model, E 5 2vb 3 B/c (2)
a dispersion relation decribing the coupling of the shear

B 5 B0 1 = 3 A (3)
Alfvén wave to the fast magnetosonic mode is derived and
compared with the kinetic theory results in Section 6. Two- A/t 5 2cE (4)
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Vlasov–Maxwell system and, consequently, the resulting
j 5

c
4f

= 3 B (5) equations are phase-space preserving and allow the con-
struction of an energy integral, which is desirable for nu-

p1/c
b /t 1 = · (vbp1/c

b ) 5 0 (6) merical purposes.
The equations, which were derived using the action-rb/t 1 = · (vbrb) 5 0. (7)

variational method [7, 8], are

Here B0 is the equilibrium magnetic field, A is a modified
vector potential (different from the usual vector potential Ẋ 5

1

B**i

[B**U 2 b̂ 3 (kEl 2 e=B0 1 =kv' · Al)], (9)
by a term involving the gradient of the scalar potential),
and an adiabatic equation of state is used. We assume that
the hydromagnetic approach for disturbances is justified U̇ 5

B**

B**i

· (kEl 2 e=B0 1 =kv' · Al), (10)
by the presence of the dense cold population, which allows
the neglect of parallel electric fields. The validity of this

ė 5 0, (11)assumption was discussed, for example, by Southwood [13]
and Cheng [3].

where B** 5 B0 1 kdBl, B**i 5 B0 1 kdBil, dB 5 = 3 A;
b̂ is the unit vector along the equilibrium magnetic field;

3. GYROKINETIC EQUATIONS v' is particle perpendicular velocity; k l ; r du/2f and
units in which e 5 m 5 c 5 1 are used. In Eqs. (9) andIn this section the equation of motion used to advance
(10) B0 5 B0(X) is the value of the equilibrium magneticthe energetic ions in the simulation and the calculation of
field at the gyro-center position, while all the perturbedthe hot ion density and current are described. Since we
fields are taken at the particle position x 5 X 1 rh , wherewant to include the hot ion kinetic effects such as finite
rh is gyroradius vector. These equations are first-orderLarmor radius and wave-particle resonances, the low-fre-
accurate in the perturbation field amplitude and containquency gyrokinetic equations are employed to describe the
high order terms, which ensure the Hamiltonian propertieshot particle dynamics. The use of electromagnetic gyroki-
of the system. The particle magnetic moment e is an invari-netic equations with spatial gyroaveraging [14] allows us
ant of motion and may be treated as a constant parameterto eliminate the fast gyromotion time scale and consider
in the simulations.perturbations with perpendicular wavelength comparable

Since there is freedom in choosing the averaging trans-to the hot ion gyroradius.
formation, different equations of motion (in different gyro-The gyrokinetic ordering, which assumes that
center coordinates) can be derived [7, 10]. The transforma-
tion that gives Eqs. (9) and (10) seems to be the most
suitable for the hybrid model, because the scalar potentialg

gci
p

rh

L
p

ki

k'

p
ew

T
p

dB
B

5 O(«), k'rh 5 O(1) (8)
does not appear explicitly in the equations of motion, and
the vector potential in the term kv' · Al can be calculated
easily from (4), without the usual =w term, after one notesis adopted in this paper. Here rh is the gyroradius, L is

the equilibrium scale length, ki and k' are the parallel and that kv' · =wl 5 B0kw/ul 5 0. Thus, there is no need to
solve for w, and a simple explicit time stepping scheme canperpendicular wave numbers, dB and w are the perturba-

tion of magnetic field and electrostatic potential, and be used to advance the fields using Eqs. (1)–(7) and then
use the calculated field values to push the particles. In fact,« ! 1 is the smallness parameter.

The gyrokinetic equations, derived from a systematic Eqs. (9) and (10) can be written in a form which does not
involve the vector potential at all, because to first orderHamiltonian theory [7, 9, 10], were used in the simulation

code. Their derivation is based on the Lie perturbation in the smallness parameter « the following relation holds: =
kv' · Al 5 kv' 3 dBl. This form does not conserve energymethod [15], which allows one to systematically remove

gyro-angle dependence from the system to any desired exactly, but it can have better numerical properties with
respect to short wavelength perturbations.order, providing a transformation from physical space co-

ordinates (x, v) to gyro-center coordinates (X, U, e, u), In our hybrid MHD-gyrokinetic code we are using the
energy conserving form of Eqs. (9) and (10), which arewhere X is the gyrocenter position, U is the parallel veloc-

ity, e is the first adiabatic invariant, and u is the gyro- advanced in time using the leap-frog trapezoidal scheme.
Following the numerical procedure described by Lee [14],angle. Note that the values of X, U, and e in the trans-

formed space differ from those in physical space by the gyroaverages are calculated using either four or eight
point spatial averaging along the gyro-orbit. The term =small terms O(«); in particular U 5 vi 1 O(«) and e 5

v2
'/2B0 1 O(«). The main advantage of this formalism is kv' · Al is calculated at the particle location by analytical

differentiation of the interpolation function.that it preserves the Hamiltonian symmetry of the original
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The gyro-center particles are described in terms of the include the ion polarization current, and the whole plasma
fluid velocity should appear in Ohm’s law (2).gyro-center distribution function F(X, U, e), so that trans-

formation of the zero and first velocity moments is required
to calculate the hot ion density and current density in 4. df METHOD
physical space:

In the df method the zero-order distribution function is
assumed to be known, so the zero-order density nh0 and

nh(x) 5 E d(X 1 rh 2 x)F(X, U, e)d 3X dU de du (12) current jh0 can be calculated analytically. The perturbed
part of the distribution function is calculated along a set

jh(x) 5 E (Ẋ 1 v')d(X 1 rh 2 x)F(X, U, e)d 3X dU de du. of characteristics (9)–(11) by assigning a weight w p df to
each simulation particle. The particle weights are then used

(13) to calculate the perturbed hot ion density dnh and current
density djh . Since the particle weight is no longer a constant
of the motion (as in the conventional particle simulationIn the code this is done by distributing each gyrokinetic
method), the evolution equation for the weight has to beparticle as four or eight subparticles uniformly around the
added to the equations of motion (9) and (10). We willgyro-orbit with the center at X and radius rh , and summing
derive the evolution equation for the weight from the Vla-up the contributions from all subparticles when calculating
sov equation using a definition of weight which is analogouscurrent and density [14]. The resulting nh and jh are then
to that of Parker and Lee [18].substituted into the bulk momentum equation (1). Spatial

We will start by writing the equation for the gyro-centergyroaveraging in Eqs. (9), (10) and the transformation to
distribution function F(X, U, e, t), assuming that F includesphysical space in (12) and (13) are done in the same way,
the Jacobian of the transformation from physical-spaceand this procedure resolves finite Larmor radius effects
coordinates to gyro-center coordinates following Lit-for k'rh 5 O(1). Linear spline interpolation is used to
tlejohn [15], that is,accumulate nh and jh , as well as for calculation of the

particle drift velocity (9) and parallel acceleration (10).
Equations (1)–(13) constitute a hybrid MHD-gyroki- F 5 B**i f (X, U, e, t), (14)

netic model for describing low-frequency MHD type phe-
nomena in cases where the parallel electric field effects where J 5 B**i is the Jacobian and f (X, U, e, t) is the
can be neglected. Ohm’s law (2) assumes also that nh ! particle distribution function expressed in gyro-center co-
nb , so that the electric field is determined by the bulk ordinates. The number of particles in a phase-space volume
plasma motion only, rather than by the dynamics of the element dG 5 B**i dZ is equal to dN 5 F dZ 5 f dG, where
whole plasma. Since the polarization drift is not included Z 5 (X, U, e). The conservation of particles then implies
in the expression for the hot ion current (13), the hot ion [15, 19]:
perpendicular inertia is neglected, compared to the bulk
plasma perpendicular inertia in the momentum equation



t
F 1



X
· (ẊF) 1



U
(U̇F) 5 0. (15)(1) as well.

The dispersion analysis of the hybrid MHD-gyrokinetic
equations (1)–(13) presented in Section 6 shows that the

Since the equations of motion (9)–(11) preserve phase-model correctly describes compressional type perturba-
space volume dG, the Liouville theorem holds,tions, provided that ordering (8) holds. The transverse

Alfvén waves are accurately described by the model if the
conditions g ! kivthi and g ! g* are satisfied, where g* 

t
B**i 1



X
· (ẊB**i ) 1



U
(U̇B**i ) 5 0, (16)

is the drift frequency. Thus the model can be used to study
the interaction of shear Alfvén waves with energetic ions

which can be proved directly by using Eqs. (9) and (10).when the particle energy is high enough, so that the drift
As can be seen from (15) and (16), f satisfies the Vlasovvelocity is large compared to the phase speed of the wave.
equation in gyro-center coordinates, that is,In particular, the model can be applied to the study of the

interaction of low-frequency MHD waves observed in the
dayside magnetosphere [16, 17] with energetic (100–200 df

dt
5

f
t

1 Ẋ ·
f
X

1 U̇
f
U

5 0. (17)
keV) ring current ions, because the frequency associated
with the ion bounce motion along magnetic field lines and
ion magnetic drift frequency are large compared to the The moments of F in the simulations are calculated using

a limited number of points in phase-space at which thefrequency of the wave. When perpendicular hot ion inertia
effects are important, expression (13) has to be modified to value of F is known. The positions of these points corre-
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spond to the positions of the simulation particles which in a simpler evolution equation, because the term involving
the divergence of the phase-space velocity Ż/Z does notare regarded as Lagrangian markers [12, 20, 21]. We will

distinguish between the physical particles described by the appear on the RHS of Eq. (23) as it does in [12]. Extra
calculations are needed, however, to express dF in terms ofdistribution function F and the simulation (marker) parti-

cles which are described by a discrete distribution function w and the marker distribution function P. Upon recalling
B**i 5 B0 1 kdBil we have dF 5 B**i f 2 B0 f0 5 B**i df 1P̂(Z, t). The marker distribution can be written in the

Klimontovich representation as kdBil f0 , so that dF 5 (w 1 (1 2 w)kdBil/B**i )P. Thus, in
the simulations dF can be approximated by the weighted
Klimontovich distribution as

P̂(Z, t) 5 OM
m51

d(X 2 Xm)d(U 2 Um)d(e 2 em), (18)

dF P OM
m51

dmd(X 2 Xm)d(U 2 Um)d(e 2 em), (24)
where m is the marker index and M is the total number
of marker particles in the simulation. As was pointed out where we have defined
by Lee [14], particle pushing is equivalent to solving the
equation

dm 5 wm 1 (1 2 wm)
kdBil

B**i

U
Z5Zm

. (25)


t
P̂ 1



Z
· (ŻP̂) 5 0, (19)

Now consider the calculation of a phase-space integral
of the general form

which has the same form as Eq. (15) for F. Note that, as
follows from (16),

I(A) 5 E A(Z, t)F(Z, t) dZ. (26)

Separating the zero-order part and the perturbation, weŻ
Z

5
Ẋ
X

1
U̇
U

5
1

B**i

dB**i

dt
? 0; (20)

can rewrite the integral for I(A) as

I(A) 5 E A0F0 dZ 1 E [A0 dF 1 dAF] dZ, (27)thus the particle motion in the gyro-center space (X, U,
e) described by (9)–(11) is compressible, so Eqs. (15) and

where A 5 A0 1 dA and F 5 F0 1 dF.(16) cannot be reduced to the usual form of the Vlasov
The first integral in (27) is assumed to be calculatedequation (17).

analytically, while the particle simulations are applied toWe can define the smooth marker distribution function
the calculation of the second integral. To find an estimateP(Z, t) as an ensemble average of P̂, and then define parti-
for it we let F P P̂ and use the approximation (24) for dF.cle weight as
Then (27) becomes

w 5
B**i df

P
, (21) I(A) 5 E A0F0 dZ 1 OM

m51
[A0dm 1 dA]uZ5Zm

. (28)

where df 5 f 2 f0 . If P is chosen such that P(Z, t) 5 F(Z, In particular, to calculate particle density (12), we let
t), then from (14) we have A0 5 kd(X 1 rh 2 x)l and dA 5 0, so that

B**i f0 5 (1 2 w)P, (22) nh(x) 5 nh0(x) 1 OM
m51

dmkd(Xm 1 rm 2 x)l. (29)

and the following time evolution equations for w can be
The current (13) can be calculated by choosing A0 5obtained using Eqs. (15) and (17):
k(Ẋ0 1 V')d(X 1 rh 2 x)l and dA 5 dẊkd(X 1 rh 2 x)l
in (28) to obtain

ẇ 5 2(1 2 w)
1
f0

df0

dt
. (23)

jh(x) 5 jh0(x) 1 OM
m51

k[(Ẋ0m 1 V'm)dm 1 dẊm]d(Xm 1 rm 2 x)l,

Our definition of the weight is different from that of Hu
(30)and Krommes [12], where the general case of compressible

particle dynamics was considered and marker weight was
defined as w 5 dF/P. The definition of w in (21) results where Ẋ0 is the zero-order particle drift and dẊ 5 Ẋ 2 Ẋ0 .
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Assuming that gyroaverages are calculated by distribut- the MHD-gyrokinetic system: dKh/dt 1 dEMHD/dt 5 0,
where EMHD 5 e (rbv2

b/2 1 pb/(c 2 1) 1 B2/8f)d 3x is theing the particle charge at Ng points on the ring ux 2
Xmu 5 rm , we can rewrite (29) and (30) as MHD energy.

The diagnostics based on the above conservation laws
were implemented in the code and have proven to be useful

nh(x) 5 nh0(x) 1 OM
m51

1
Ng

ONg

s51
dmd(Xm 1 rm,s 2 x), (31) for an accuracy check and for debugging the code. In the

standard ‘‘full f ’’ code the total energy is conserved exactly
(in the limit Dt R 0), the parallel momentum is conserved

jh(x) 5 jh0(x) 1 OM
m51

1
Ng

ONg

s51
[(Ẋ0m 1 V'm,s)dm to the next order in the gyrokinetic smallness parameter

« and particle conservation is trivial. A result of separating
the moments of the distribution function into an analyti-1 dẊm]d(Xm 1 rm,s 2 x), (32)
cally calculated zero-order part and a numerically evalu-
ated perturbed part is that the number of particles and totalwhere index s denotes the sth point on the ring. Equations
energy in the df algorithm are no longer exactly conserved.(31) and (32) were used in the code for calculation of the
However, these conservation laws are maintained in theperturbed hot ion density and current.
simulations in the limit of a large number of marker parti-
cles and sufficient spatial resolution.5. CONSERVATION LAWS

To obtain an estimate for the total number of physical
The conservation properties of particle number, momen- particles in the df method, we let A0 5 1 and dA 5 0

tum, and total energy of the df method for the electrostatic in Eq. (28), to find N(t) 5 N0 1 oM
m51 dm . Assuming

slab case were considered by Parker and Lee [18]. that the perturbation amplitude is small at t 5 0 and that
Here we consider the conservation of particle number, w(0) 5 0, the particle conservation can be written in the

total parallel momentum, and total energy for the hybrid form
MHD-gyrokinetic system (1)–(13) when the periodic
boundary conditions are applied, and discuss the associated

dN 5 OM
m51

dm 5 0, (36)conservation properties of the df scheme. For the total
number of physical particles we have

which is the same as the result obtained by Hu and
Krommes [12], because Eq. (24) implies that one can defineN(t) 5 E F(Z, t) dZ, (33)
weight d also as d 5 dF/P, which is their definition of the
marker weight.and Eq. (15) guarantees that the number of particles is

An estimate for the particle parallel momentum can beconserved: dN/dt 5 0. Momentum conservation can be
obtained from Eq. (28) in the same way, thus e UF dZ Pderived by integrating Eq. (1) over the simulation volume, oM

m51 Umdm , where we have assumed that the zero-orderusing the particle equations of motion (9) and (10) to
term vanishes. The parallel momentum conservation equa-obtain
tion (34) becomes

d
dt SE rbvb d 3x 1 E Ub̂F dZD5 0, (34) E rbvbi d 3x 1 OM

m51
Umdm 5 0, (37)

where the second integral in the brackets is the hot ion provided that the bulk plasma parallel momentum is
parallel momentum. Thus, the total parallel momentum of zero initially.
the MHD-gyrokinetic system is conserved in our model. For the particle kinetic energy integral (35) one can write
In the perpendicular direction the momentum of the bulk
component only appears in Eq. (34), because the hot ion

Kh 5 Kh0 1 OM
m51

[(U2
m/2 1 emB0)dm 2 kv' · Alm]. (38)perpendicular inertia has been neglected, compared to that

of the bulk plasma in Eqs. (2) and (13).
We will define the hot ion kinetic energy integral as

A number of test runs were performed with Kh calculated
as in Eq. (38). It was found that, even though the total

Kh 5 E (U2/2 1 eB0 2 kv' · Al)F(X, U, e)d 3X dU de. (35) energy was conserved when the perturbation amplitude
was above the thermal noise level (‘‘full f ’’ noise level),
for perturbations with much smaller amplitude the fluctua-It has the property that the equality dKh/dt 5 e jh · Ed 3x

is exact, resulting in exact total energy conservation for tions of the hot particle kinetic energy were higher than
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the wave energy, that is, Kh was ‘‘too noisy’’ and the total 6. LOCAL DISPERSION RELATION
energy was not conserved. As a result, a considerably larger

In this section we derive the local dispersion relationnumber of simulation particles was required to obtain good
for the linearized hybrid MHD-gyrokinetic system in slabenergy conservation, while very good agreement with lin-
geometry. For simplicity we assume that Tb 5 0, so thatear theory and convergence in the nonlinear behavior
bulk plasma pressure can be neglected in the momentumcould be achieved with a relatively small number of parti-
equation (1). The dispersion relation then describes thecles. A similar problem was reported by Parker and Lee
coupling between the transverse Alfvén type and compres-[18], where one-dimensional gyrokinetic simulations of the
sional (fast magnetosonic) type waves due to the finite hotelectrostatic drift wave instability were performed.
ion pressure gradient and finite Larmor radius.Such large errors for particle kinetic energy can be un-

The background magnetic field and hot ion pressurederstood if one estimates how Kh changes at one time step:
gradients are related by the pressure balance condition

DKh 5 Dt E (jh0 · E) d 3x 1 Dt E (djh · E) d 3x. (39) B0

4f
=B0 1 T' =nh0 1 nh0 =T' 5 0, (42)

Although the first term in Eq. (39) is zero analytically
where nh0 and T' are the zero-order hot ion density and(when jh0 5 0), or vanishes in the first order in the perturba-
perpendicular temperature, and all the gradients are per-tion amplitude (jh0 5 const), the errors in the kinetic energy
pendicular to the equilibrium magnetic field. The zero-associated with it do not vanish in the simulations. The
order particle distribution function in gyro-center space isassociated noise is actually ‘‘full f ’’ noise, since it comes
taken to befrom jh0 and can be estimated as O(«)/ÏM. When the

number of markers M is not large enough, the errors from
the first term in Eq. (39) become larger than the second

F0 5 nh0(X)
1
e

e2e/efM(U), (43)term pO(«2) and the total energy is not conserved.
In other words, even though in the df scheme the noise

associated with nh0 and jh0 is eliminated from Eq. (1), the where e is the average magnetic moment, and fM(U) 5
particles are moved with drift velocity (9), which includes 1/Ï2fTi exp(2U 2/2Ti), a Maxwell distribution function
the zero-order drift, and this unperturbed particle motion with parallel temperature Ti . The particle distribution in
in a wave field results in large fluctuations in the particle physical space corresponding to F0 is a local Maxwell distri-
kinetic energy. We were able to eliminate this noise by cal- bution with nonuniform density and perpendicular temper-
culating ature, where =T'/T' 5 =B0/B0 , since T'(x) 5 eB0(x). For

this distribution the equilibrium condition becomes

E (jh0 · E) d 3x 5 O
m

[Ẋm0 · kElm 1 kv' · Elm](1 2 dm) (40)
kn 5 2kB(1 1 2/b'), (44)

at each time step and integrating it in time. Then, instead where we define kn 5 d ln nh0/dx, kB 5 d ln B0/dx and
of Kh we calculate dKh 5 Kh 2 e e (jh0 · E) d 3x dt, so that b' 5 nh0T'/(B2

0/8f).
In agreement with ordering (8), we assume that the local

approximation k'L @ 1 is valid, so that the backgroundd
dt

dKh 5 E (djh · E) d 3x. (41) and perturbation scale lengths in the Vlasov equation (17)
are completely separated. In this case, one obtains from
Eqs. (16) and (17)

As a result, it was possible to obtain good energy conserva-
tion even in runs with a very low perturbation amplitude



t
F 1



X
· (ẊF) 1



U
(U̇F) 5 2B**i Ẋ · =f0 , (45)without increasing the number of particles in the simula-

tion. The above discussion indicates that there seems to
be a significant numerical noise associated with calculation

where the operator /X on the left side acts on the per-of second velocity moments. With the current coupling
turbed quantity only. The linearized equation for dFscheme, this issue is merely diagnostic, whereas with the
then becomespressure coupling scheme second moment quantities ap-

pear in the momentum equation, which can make the cur-
rent coupling scheme preferable over the pressure cou-

2i(g 2 k · Ẋ0) dF 5 2ik · dẊF0 2 U̇
F0

U
2 (K · dẊ)F0 . (46)

pling scheme.
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In Eq. (46) we have defined K 5 =f0/f0 , Ẋ0 and dẊ are case when the hot ion drift frequencies are large compared
to the frequency of the wave. The more accurate expressionzero- and first-order drift velocities; the perturbation is

taken to be of the form exp(ik · x 2 igt), where k 5 for current, valid for arbitrary values of kn and kB , can be
calculated by coordinate transformation in the six-dimen-kiê1 1 k'ê2 is the wave vector, ê1 ; b̂ 5 B0/B0 and we

assume the background magnetic field and density to vary sional phase-space (x, v), using the known relations be-
tween physical and gyro-center variables [7], and is beyondonly in the ê3 direction, so that K 5 Kê3 .

Solving for dF, we obtain the scope of this article.
Since we are using the local approximation, the spatial

dependence of the terms in the square brackets in Eq. (51)
dF 5 HiE2 S gM(g 2 g*)

g 2 kiU 2 gM
2 g*D J0

gk'Ti
(47)

is of the form exp(ik · X); thus, integrating with respect to
X and calculating gyroaverages, we obtain

1 E3 Fv'J1

gTi
S g 2 g*

g 2 kiU 2 gM
2 1D1

k'J0

gB0
GJ F0 ,

djh' 5 E FSdẊ' 1 b̂ 3 K
1

B0
kv' · AlD J0F0

(52)
where we have used linearized Eqs. (9) and (10), Faraday’s
law, and = · dB 5 0, and have defined 1 (Ẋ0'J0 1 iv'J1ê3)dFG dU de,

gM 5 k · b̂ 3 =B0e/B0 ,
(48) where we have used kv' exp(2ik · r)l 5 iv'J1ê3 . Substitut-

g* 5 gM 1 k · b̂ 3 KTi/B0 . ing Eq. (47) into Eq. (52) for two perpendicular compo-
nents of djh' we obtain

The gyroaverages were calculated using kexp(ik · r)l 5
J0(k'r) and kv' · A(X 1 r)l 5 2iv'J1(k'r)A3 5 2v'J1E3/

djh2 5
iE2

gk2
'Ti

E F (g 2 g*)gM

g 2 kiU 2 gM
2 g*G gMJ 2

0F0 dU deg, where J0 and J1 are the zero- and first-order Bessel func-
tions.

Upon recalling that K 5 d ln (F0/B0)/dX3 5 kn 2 kB ,
1

E3

gk'Ti
E FS (g 2 g*)gM

g 2 kiU 2 gM
2 g*D v'J1J0we can rewrite g* as

1 gk'Ti
1

B0
J 2

0G F0 dU de, (53)
g* 5 Fgni S1 2

kB

kn
(1 2 e/e)D1 gM ST'

Ti
2 1DG Ti

T'

, (49)

djh3 5 2
E2

gk'Ti
E FS (g 2 g*)gM

g 2 kiU 2 gM
2 g*D v'J1J0where gni is diamagnetic drift frequency.

Only the perpendicular component of the perturbed cur-
rent appears in the linearized momentum equation (1):

1 gk'Ti
1

B0
J 2

0G F0 dU de

2igrbvb 5 (dj 2 djh) 3 B0 2 nh0E. (50)

1
iE3

gTi
E F g 2 g*

g 2 kiU 2 gM
1 STi

T'

2 1DG v2
'J 2

1F0 dU de,
Thus we only need to calculate djh'

(54)
djh' 5 E [dẊ'F0 1 (Ẋ0' 1 v')dF 1 b̂

(51) where the identity e v2
'J 2

1F0B0 de/T' 5 2 e k'v'J1J0F0 de
has been used to obtain Eq. (54).3 Kkv' · AlF0/B0]d(X 1 rh 2 x)d 3X dU de du,

Now we can substitute Eqs. (53) and (54) into the linear-
ized momentum equation (50) and use the MHD equationswhere the first two terms in the square brackets are the
(2)–(5) to obtain the dispersion relation for the MHD-first-order part of Eq. (13) and the third term has to be
gyrokinetic systemadded to the expression for jh when the background distri-

bution function is not uniform. This term ensures the sym-
(g2 2 k2

i v2
A 2 A22)(g2 2 k2v2

A 2 A33) 5 A2
32 , (55)metry of the resulting dielectric tensor, which is important

for obtaining the correct coupling between the shear Alf-
wherevén and compressional (fast) mode. It can also be verified

by making the transformation from physical space to gyro-
kinetic space in the first velocity moment integral. Note A22 5

B2
0

nbk2
'Ti

E F (g 2 g*)gM

g 2 kiU 2 gM
2 g*G gMJ 2

0F0 dU de, (56)
that Eqs. (13) and (51) are approximations valid in the
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A32 5 2
B2

0

nbk'Ti
E FS (g 2 g*)gM

g 2 kiU 2 gM
2 g*D v'J1J0

2 gk'Ti
1

B0
(1 2 J 2

0)G F0 dU de, (57)

A33 5
B2

0

nbTi
E F g 2 g*

g 2 kiU 2 gM
1 STi

T'

2 1DG v2
'J 2

1F0 dU de,

(58)

and v2
A 5 B2

0/4frb is the Alfvén speed of the bulk plasma.
In the limit of small A32 , such as when kB 5 kn 5 0 and

FIG. 1. The 2D hybrid MHD-gyrokinetic simulation of Landau damp-k'rh ! 1, Eq. (55) describes decoupled pure transverse
ing of a compressional mode using 160,000 particles on a 32 3 32 gridAlfvén and compressional waves. When the hot ion
and Dt 5 0.5. Shown is the time history of the perturbed magnetic fieldpressure and background magnetic field are nonuniform,
energy (dB/B0)2.

there is significant coupling between the Alfvén and
fast modes.

The coupled shear Alfvén and compressional waves in
7. SIMULATION RESULTSa two-component plasma (hot and cold) in slab geometry

were considered, for example, in [22], where the effect of
The described hybrid MHD-gyrokinetic simulation=B0 and =n0 on the mode coupling was studied for the

scheme has been implemented in a 2D code using slabhigh-beta case b p 1 and Ei 5 0. The dispersion relation
geometry. Periodic boundary conditions for fields and par-obtained by Ng and Patel [22] using a kinetic description
ticles are used in both directions. The equilibrium magneticfor hot particles is similar to Eq. (55), if one assumes that
field is assumed to be in the plane of the simulation. Sincethe plasma consists of cold electrons, cold ions, and hot
the computational time required for particle pushingions, and sets =T'/T' 5 =B0/B0 .
greatly exceeds the time needed to solve the field equa-The detailed comparison of Eqs. (55)–(58) with kinetic
tions, subcycling is used to update the fields with a smalltheory results shows that the MHD-gyrokinetic model ac-
enough time step to avoid numerical instability. The parti-curately describes fast magnetosonic waves, assuming that
cle coordinates and weight factors are advanced with aordering (8) holds. The coupling terms, namely the off-
larger time step, which in this case is limited by the accuracydiagonal elements of the dielectric tensor pA32 , are identi-
requirement of the small parallel displacement of the par-cal to those in Eq. (6) in [22], except for the term pI1
ticle.exp(2k2

'r2
h/2), which can be neglected when the Alfvén

Three cases are considered. First, to benchmark the codeand fast modes are coupled through the hot ion pressure
the damping of a fast magnetosonic wave in a uniformgradient (g* @ g(k'rh)2 in Eq. (57)). In a homogeneous
isotropic plasma through magnetic Landau resonance withplasma the coupling between the modes is due to the finite
energetic ions was simulated. Two-dimensional simula-Larmor radius and it is qualitatively correctly described
tions of the mirror instability driven by the hot ion tempera-by Eq. (57) for k2

'r2
h & 1. In the Alfvén wave dispersion

ture anisotropy were also performed. In both cases therelation only terms quadratic in the drift frequency are
simulation results were compared with kinetic theory re-present. It lacks, therefore, terms of order O(g/g*) and
sults obtained using the linear dispersion relation solverO(g2/g*2), and is valid in the limit g*, gM @ g. The
WHAMP [23]. A 2D numerical model with fixed back-anistropy related term pk2

i (T' 2 Ti) [22] is also missing
ground inhomogeneity was developed using the multiplein our expression for A22 . Thus the model is suitable for
scale expansion method and it was used to study the tem-studying compressional type modes, in particular drift-mir-
perature gradient-driven instability of a compressionalror and drift-compressional instabilities. It can also be
mode for b 5 0.5.used to study pressure gradient driven instabilities of

the shear Alfvén wave, provided that the drift frequency
7.1. Landau Damping of Compressional Mode

is large compared to the wave frequency and the plasma
is isotropic. The dispersion equation (55) was solved Figure 1 shows damping of a compressional type pertur-

bation with initial bulk velocity amplitude vb 5 0.01vA andnumerically to calculate the linear wave frequency and
growth rate, which were then compared with simula- parallel and perpendicular wave numbers kirh 5 0.2 and

k'rh 5 0.4. The parameters of the hot plasma are vthi 5tion results.
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directions was set to be equal to the parallel and perpendic-
ular wavelengths of the growing mode, which is also the
most unstable mode in the system. Fourier analysis shows
that this mode remains dominant throughout the simula-
tion and, therefore, its linear growth rate can be estimated
from the increase in (dB/B0)2 as c P 0.029gci . This is in
good agreement with the linear kinetic theory result
c 5 0.026gci .

Figure 3 shows time histories of (a) perturbed magnetic
field energy, (b) hot ion kinetic energy, (c) change in the
hot ion parallel (solid line) and perpendicular (dashed line)
kinetic energy, and (d) averaged particle weight dN/N 5
o dm/M, obtained in the same run as Fig. 2. All the energies
are normalized to the background magnetic field energy.
Since no longer wavelength modes are allowed to growFIG. 2. The perturbed magnetic field energy as a function of time

for the 2D simulation of the mirror instability with T'/Ti 5 2.25, bhi 5 and the amplitude of the shorter wavelength modes re-
1., nh/nb 5 0.1, for a run with 320,000 particles on a 64 3 64 grid with mains small, this is essentially a one-mode regime, and
Dt 5 0.5. Other parameters are given in the text. Figs. 3a and b indeed exhibit the characteristic behavior of

a monochromatic wave with regular nonlinear oscillations
following the linear growth phase.

vth' 5 3.16 and nh 5 0.1nb . The bulk plasma temperature As the fluctuations grow, the particle parallel kinetic
was set to be zero. In this section all velocities are normal- energy increases and the perpendicular kinetic energy de-
ized to the bulk Alfvén velocity vA , time is in terms of creases (Fig. 3c), thus reducing the initial temperature an-
inverse ion cyclotron frequency, and length is measured isotropy. However, the instability saturates at a rather low
in units of vA/gci . The calculation employs 160,000 macro- level, (dB/B0)2 P 0.002, without a significant change in the
particles randomly initialized on a 32 3 32 grid with grid temperature ratio. Interestingly, when the simulation was
spacing Dxi 5 3.125 and Dx' 5 1.56. The particle time step run with a larger system size, the saturation of the most
is Dt 5 0.5, with a smaller time step for field subcycling
Dtf 5 Dt/4.

Figure 1 shows that the wave field energy decreases by
two orders of magnitude to the noise level at t P 100. The
wave energy is absorbed by those resonant particles which
have parallel velocity comparable to the wave phase veloc-
ity U p g/ki . The measured real frequency and damping
rate are (g, c) 5 (0.2, 20.023)gci , whereas kinetic theory
predicts (g, c) 5 (0.2, 20.030)gci . The agreement is very
good considering the relatively small number of particles
used in the two-dimensional simulation of high-b (b 5 1.0)
plasma. The total energy was conserved within 2.5% of the
initial perturbation energy and the number of particles was
conserved with an accuracy dN/N p 1025.

7.2. Mirror Instability

The simulation of the mirror instability was performed
for the hot ion temperature anisotropy T'/Ti 5 2.25 and
bi 5 1. The simulation was carried out using 320,000 macro-
particles on a 64 3 64 grid with grid spacing Dxi 5 1.56
and Dx' 5 0.78. Figure 2 shows time evolution of the
perturbed magnetic field energy for the hot ion parameters:
vthi 5 3.16, vth' 5 4.74 and nh 5 0.1nb . Time steps Dt 5
0.5 and Dtf 5 0.125 were used for particles and fields,

FIG. 3. Time histories of (a) (dB/B0)2, (b) hot ion kinetic energy, (c)
respectively. The instability grows from the small ampli- change in hot ion parallel (solid line) and perpendicular (dashed line)
tude initial perturbation with kirh 5 0.3 and k'rh 5 0.6. kinetic energy, and (d) relative change in particle number dN/N, for the

same simulation as Fig. 2.The length of the system in the parallel and perpendicular
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tions. The agreement is very good, except for smaller values
of k'rh , for which the gyrokinetic condition ki ! k' is vio-
lated.

7.3. Drift Instability of Compressional Mode

Simulations of the temperature gradient-driven instabil-
ity of the compressional mode [25] were performed for
the hot ion distribution F0 5 nh0 fM(U) exp(2e/e), which
corresponds to a distribution of adiabatically injected parti-
cles [13]. A background magnetic field was assumed to be
nonuniform, with gradient out of the plane of the simula-
tion. The case of =nh0 5 0 and magnetic field pressure
gradient balanced by the gradient in the zero-order bulk
plasma pressure was considered. This approach allows one
to perform 2D simulations with fixed background inhomo-
geneity, using periodic boundary conditions, and facilitatesFIG. 4. The linear growth rate of the mirror instability as a function

of perpendicular wave number for T'/Ti 5 2.25, bhi 5 1., nh/nb 5 0.1, comparison of the simulation results with the solution of
and kirh 5 0.3. The solid line is a result obtained using the dispersion the linear dispersion relation obtained in the local approxi-
relation solver WHAMP [23], the dots represent the simulation results mation. The dispersion relation for this case is similar tofor the runs with 40,000 particles on a 32 3 32 grid with Dt 5 0.5.

Eq. (55). For the fast mode, the coupling to the transverse
Alfvén wave can be neglected and the dispersion relation
can be written as

unstable mode was succeeded by the growth of a longer
wavelength mode, with higher saturation amplitude, lead-
ing to the considerable reduction of the temperature aniso- g2 5 k2v2

A 1
1
nb

2
r2

h
E S g 2 gM

g 2 kiU 2 gM
D v2

'J 2
1F0 dU de, (59)

trophy. The growth of longer wavelength modes was also
observed in simulations of mirror modes by McKean et
al. [24]. where gM is magnetic drift frequency defined by Eq. (48),

T'/Ti 5 1 and =T'/T' 5 =B0/B0 . The resonant ions, forThere was good conservation of total energy and number
of particles in the simulation, with the change in total which g 2 kiU 2 gM 5 0, will drive the instability via

inverse Landau damping, if the condition g , gM is sat-energy less than 7% of the wave energy, and dN/N p 1024.
Since the bulk plasma pressure was zero, the change in isfied.

The simulations were carried out with bh 5 0.5, nh 5bulk parallel momentum was negligible, while the hot ion
parallel momentum was conserved, oscillating around zero 0.005nb , and rh/LB 5 0.2, where LB 5 u= ln B0u21 and

rh 5 10. The wavevector of the initial perturbation wasvalue with amplitude smaller than 1024. For the set of
parameters used in the simulations, conservation proper- k'rh 5 0.8 and kirh 5 0.2, which corresponds to the most

unstable solution of Eq. (59). The number of particles usedties and linear growth rate are affected mostly by the size
of the particle time step, which should be smaller than Dxi/ in the simulation was 40,000 on a 16 3 32 grid with Dxi 5

18.0 and Dx' 5 2.5. The particle and field time steps werevthi . The correct growth rate and good conservation of
energy, particle number, and parallel momentum were also Dt 5 1.0 and Dtf 5 0.125.

Figure 5 shows the evolution of (a) the real part andobtained in the simulations with a smaller number of parti-
cles, M 5 40,000 and a 32 3 32 grid. However, a larger (b) the amplitude of the compressional component of the

perturbed magnetic field dBi/B0 for the dominant Fouriernumber of particles and finer spatial resolution were re-
quired to achieve convergence in the nonlinear behavior mode. The growth rate measured from a logarithmic plot

is c 5 0.004gci , and the real frequency is found to be g 5after saturation.
In order to investigate how well finite Larmor radius 0.09gci , which is in very good agreement with the solution

of the linear dispersion relation Eq. (59): (g, c) 5effects are reproduced by the model, simulations were
performed to study the dependence of the linear growth (0.087, 0.0042)gci .

The instability saturates due to resonant particle trap-rate of the mirror mode on k'rh . Simulations were carried
out using 40,000 macroparticles on a 32 3 32 grid for ping by the wave. Therefore, the very small linear growth

rate leads to the very low saturation level dB/B0 P 10.8(c/0.4 # k'rh # 1.2 and the rest of the parameters are the
same as in the previous case. The results are shown in Fig. kivth)2 P 4 3 1023. The estimate for the frequency of

trapped particle oscillations in the wave magnetic well,4, where the solid line represents a theoretical result, and
the dots show the values of c/gci obtained in the simula- gb p kivthÏdB/B0 P 0.013gci , agrees with the numerical
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df algorithm strongly reduces the numerical noise level in
the simulation plasma. Therefore, considerably larger time
steps and a smaller number of particles can be used in the
simulations as compared to conventional methods.

To verify our hybrid MHD-gyrokinetic model, the linear
dispersion relation describing the coupling between shear
Alfvén and fast magnetosonic waves due to a hot ion pres-
sure gradient and finite Larmor radius effects has been
derived. The dispersion analysis shows that the model cor-
rectly describes compressional modes and coupling be-
tween the transverse and compressional perturbations. The
shear Alfvén wave dispersion is accurate when drift fre-
quencies are large compared to the frequency of the wave.FIG. 5. The 2D simulation of drift instability of the fast mode for

Very good agreement in terms of linear frequency andbh 5 0.5, nh/nb 5 0.005, and rh/LB 5 0.2: (a) The time history of the
real part of the (1,1) Fourier harmonic of dBi/B0 and (b) the corresponding growth rate between the simulation results, kinetic theory,
amplitude evolution for a run with 40,000 particles on a 16 3 32 grid and solution of the derived dispersion relation was ob-
with Dt 5 1. tained. The total energy, particle number, and parallel mo-

mentum were also well conserved in the simulations.
This work is a first step in developing a numerical model

suitable for studying low-frequency phenomena in a two-result gb p 0.01gci (Fig. 5b). Note that the saturation ampli-
component plasma. It is aimed primarily at study of thetude of this instability is an order of magnitude lower than
self-consistent effect of magnetospheric MHD waves onthe thermal noise level in a conventional ‘‘full-f ’’ code
energetic ring current ions, although the model has moreusing the same parameters. Therefore, the strong reduction
general applications in space and laboratory plasmas.in the numerical noise level of the df method allows one to

More physics can be added to the present model; inperform multidimensional simulations of weak instabilities
particular, inclusion of curvature effects would allow oneinaccessible to conventional methods.
to study excitation of low-frequency waves in the magneto-The total energy was conserved with p20% accuracy at

t 5 1800, although better energy conservation could be
achieved using a smaller particle time step. The particle
number was well conserved through the run, with udN/
Nu & 1024.

Figure 6 shows a contour plot of the spatially averaged
perturbed distribution function dF at t 5 1500. The pertur-
bation of the distribution function is largest along the lines
where the resonant condition is satisfied, g 2 kiU 2 gM(v'/
vth)2 5 0, where gM is the averaged magnetic drift fre-
quency.

8. SUMMARY

In this paper we have presented a hybrid MHD-gyro-
kinetic model suitable for self-consistent study of the inter-
action of energetic particles with low frequency MHD
waves in a high-beta plasma. Based on this model a 2D
hybrid code in slab geometry has been developed. The
code utilizes fully electromagnetic gyrokinetic equations
to advance the energetic particles and nonlinear, compres-
sional one-fluid MHD equations are used to describe the
rest of the plasma. The particles are coupled to the fluid
equations using the current coupling scheme of Park et al.
[4]. The df method has been implemented in the code

FIG. 6. Contour plots of the spatially averaged perturbed distribution
for b p 1 electromagnetic perturbations. The gyrokinetic function dF at t 5 1500 from the same simulation as Fig. 5. The perturba-
description enables one to remove the restrictions on the tion of the distribution function is largest along the lines where the

resonant condition is satisfied: g 2 kiU 2 gM(v'/vth)2 5 0.particle time step dictated by the gyromotion, while the
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